in
If
Solving the program means to find an
There might be no feasible solution at all, in which case the quadratic program is infeasible, or there might be feasible solutions of arbitrarily small objective function value, in which case the program is unbounded.
Then the program is solved using the function solve_quadratic_program (or some specialized other functions, e.g. for linear programs). For this, you also have to provide a suitable exact number type ET used in the solution process. In case of input type double, solution methods that use floating-point-filtering are chosen by default for certain programs (in some cases, this is not appropriate, and the default should be changed; see Section 65.8 for details).
The output of this is an object of Quadratic_program_solution<ET>
which you can in turn query for various things: what is the status of
the program (optimally solved, infeasible, or unbounded?), what are
the values of the optimal solution
You can in particular get certificates for the solution. In short, these are proofs that the output is correct. Thus, if you don't believe in the solution (whether it says ``optimally solved'', ``infeasible'', or ``unbounded''), you can verify it yourself by using the certificates. Section 65.7 says more about this.
This has mainly historical reasons: the original motivation behind this package was low-dimensional geometric optimization where a dense representation is appropriate and efficient. In fact, the CGAL packages Min_annulus_d<Traits> and Polytope_distance_d<Traits> internally use the linear and quadratic programming solver.
As a user, however, you don't necessarily have to provide a dense representation of your program. You do not pass vectors or matrices to the solution functions, but rather specify the vectors and matrices through iterators. The iterator abstraction easily allows to build models that convert a sparse representation into a dense interface. The predefined models Quadratic_program<NT> and Quadratic_program_from_mps<NT> do exactly this; in using them, you can forget about the dense interface.
Nevertheless, if you care about efficiency, you cannot completely
ignore the issue. If
you think about a quadratic program in
We can actually be quite precise about performance, in terms of the following parameters.
|
: |
the number of variables (or columns of |
|
: |
the number of constraints (or rows of |
|
: | the number of equality constraints, |
|
: |
the rank of the quadratic objective function matrix |
The time required to solve the problems is in most cases linear in
Here are the scenarios in which this applies:
How small is small? If
If you have a problem where both
The second item merits special attention. First, you may ask why the
solver does not check that
Nevertheless, the solver contains some runtime checks
that may detect that the matrix
Our running example is the following quadratic program in two variables:
minimize
x2 + 4(y-4)2
(=
x2 + 4y2 - 32y + 64)
subject to
x + y
7
-x + 2y
4
x
0
y
0
y
4
Figure 65.1 shows a picture. It depicts the five inequalities of the program, along with the feasible region (green), the set of points that satisfy all the five constraints. The dashed elliptic curves represent contour lines of the objective function, i.e., along each dashed curve, the objective function value is constant.
The global minimum of the objective function is attained at
the point
Figure 65.1: A quadratic program in two variables
For examples how to work with the input type double, we refer to Sections 65.5 and 65.8.
Note: For the quadratic objective function, the entries
of the matrix
File: examples/QP_solver/first_qp.cpp
#include <iostream> #include <cassert> #include <CGAL/basic.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // choose exact integral type #ifdef CGAL_USE_GMP #include <CGAL/Gmpz.h> typedef CGAL::Gmpz ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif // program and solution types typedef CGAL::Quadratic_program<int> Program; typedef CGAL::Quadratic_program_solution<ET> Solution; int main() { // by default, we have a nonnegative QP with Ax <= b Program qp (CGAL::SMALLER, true, 0, false, 0); // now set the non-default entries: const int X = 0; const int Y = 1; qp.set_a(X, 0, 1); qp.set_a(Y, 0, 1); qp.set_b(0, 7); // x + y <= 7 qp.set_a(X, 1, -1); qp.set_a(Y, 1, 2); qp.set_b(1, 4); // -x + 2y <= 4 qp.set_u(Y, true, 4); // y <= 4 qp.set_d(X, X, 2); qp.set_d (Y, Y, 8); // !!specify 2D!! x^2 + 4 y^2 qp.set_c(Y, -32); // -32y qp.set_c0(64); // +64 // solve the program, using ET as the exact type Solution s = CGAL::solve_quadratic_program(qp, ET()); assert (s.solves_quadratic_program(qp)); // output solution std::cout << s; return 0; }
Asuming that GMP is installed, the output of the of the above program is:
status: OPTIMAL objective value: 8/1 variable values: 0: 2/1 1: 3/1If GMP is not installed, the values are of course the same, but numerator and denominator might have a common divisor that is not factored out.
File: examples/QP_solver/first_qp_from_mps.cpp
#include <iostream> #include <fstream> #include <CGAL/basic.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // choose exact integral type #ifdef CGAL_USE_GMP #include <CGAL/Gmpz.h> typedef CGAL::Gmpz ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif // program and solution types typedef CGAL::Quadratic_program_from_mps<int> Program; typedef CGAL::Quadratic_program_solution<ET> Solution; int main() { std::ifstream in ("first_qp.mps"); Program qp(in); // read program from file assert (qp.is_valid()); // we should have a valid mps file // solve the program, using ET as the exact type Solution s = CGAL::solve_quadratic_program(qp, ET()); // output solution std::cout << s; return 0; }
File: examples/QP_solver/first_qp_from_iterators.cpp
#include <iostream> #include <CGAL/basic.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // choose exact integral type #ifdef CGAL_USE_GMP #include <CGAL/Gmpz.h> typedef CGAL::Gmpz ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif // program and solution types typedef CGAL::Quadratic_program_from_iterators <int**, // for A int*, // for b CGAL::Const_oneset_iterator<CGAL::Comparison_result>, // for r bool*, // for fl int*, // for l bool*, // for fu int*, // for u int**, // for D int*> // for c Program; typedef CGAL::Quadratic_program_solution<ET> Solution; int main() { int Ax[] = {1, -1}; // column for x int Ay[] = {1, 2}; // column for y int* A[] = {Ax, Ay}; // A comes columnwise int b[] = {7, 4}; // right-hand side CGAL::Const_oneset_iterator<CGAL::Comparison_result> r( CGAL::SMALLER); // constraints are "<=" bool fl[] = {true, true}; // both x, y are lower-bounded int l[] = {0, 0}; bool fu[] = {false, true}; // only y is upper-bounded int u[] = {0, 4}; // x's u-entry is ignored int D1[] = {2}; // 2D_{1,1} int D2[] = {0, 8}; // 2D_{2,1}, 2D_{2,2} int* D[] = {D1, D2}; // D-entries on/below diagonal int c[] = {0, -32}; int c0 = 64; // constant term // now construct the quadratic program; the first two parameters are // the number of variables and the number of constraints (rows of A) Program qp (2, 2, A, b, r, fl, l, fu, u, D, c, c0); // solve the program, using ET as the exact type Solution s = CGAL::solve_quadratic_program(qp, ET()); // output solution std::cout << s; return 0; }
Note 1: The example shows an interesting feature of this approach: not all data need to come from containers. Here, the iterator over the vector of relations can be provided through the class Const_oneset_iterator<T>, since all entries of this vector are equal to CGAL::SMALLER. The same could have been done with the vector fl for the finiteness of the lower bounds.
Note 2: The program type looks a bit scary, with its total of 9 template arguments, one for each iterator type. In Section 65.5.1 we show how the explicit construction of this type can be circumvented.
From an interface perspective, this is just syntactic sugar: in the
model Quadratic_program<NT>, we can easily set the default bounds
so that a nonnegative program results, and a linear program is
obtained by simply not inserting any
The main reason for having dedicated solution methods for linear and
nonnegative programs is efficiency: if the solver knows that the program
is linear, it can save some computations compared to the general solver
that unknowingly has to fiddle around with a zero
Similarly, if the solver knows that the program is nonnegative, it
will be more efficient than under the general bounds
Often, there are no bounds at all for the variables, i.e., all entries
of
minimize
- 32y + 64
subject to
x + y
7
-x + 2y
4
x
0
y
0
y
4
Figure 65.2 shows how this looks like. We will not
visualize a linear objective function with contour lines but with
arrows instead. The arrow represents the (direction) of the vector
Figure 65.2: A linear program in two variables
Here is CGAL code for solving it, using the dedicated LP solver, and according to the three ways for constructing a program that we have already discussed in Section 65.3.
QP_solver/first_lp.cpp
QP_solver/first_lp_from_mps.cpp
QP_solver/first_lp_from_iterators.cpp
In all cases, the output is
status: OPTIMAL objective value: -160/3 variable values: 0: 10/3 1: 11/3
minimize
x2 + 4(y-4)2
(=
x2 + 4y2 - 32y + 64)
subject to
x + y
7
-x + 2y
4
x,y
0
Figure 65.3 contains
the illustration; since the constraint
Figure 65.3: A nonnegative quadratic program in two variables
The following programs (using the dedicated solver for nonnegative quadratic programs) will therefore again output
status: OPTIMAL objective value: 8/1 variable values: 0: 2/1 1: 3/1
QP_solver/first_nonnegative_qp.cpp
QP_solver/first_nonnegative_qp_from_mps.cpp
QP_solver/first_nonnegative_qp_from_iterators.cpp
minimize
- 32y
subject to
x + y
7
-x + 2y
4
x,y
0
This can be solved by any of the following three programs
QP_solver/first_nonnegative_lp.cpp
QP_solver/first_nonnegative_lp_from_mps.cpp
QP_solver/first_nonnegative_lp_from_iterators.cpp
The output will always be
status: OPTIMAL objective value: -352/3 variable values: 0: 10/3 1: 11/3
The problem we are going to solve is the following: given points
The problem of testing the existence of such
Now, nonnegative
equivalently, if there are
The linear program now tests for the existence of nonnegative
File: examples/QP_solver/solve_convex_hull_containment_lp.h
#include <boost/config.hpp> #include <boost/iterator/transform_iterator.hpp> #include <CGAL/Kernel_traits.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // unary function to get homogeneous begin-iterator of point template <class Point_d> struct Homogeneous_begin { typedef typename Point_d::Homogeneous_const_iterator result_type; result_type operator() (const Point_d& p) const { return p.homogeneous_begin(); } }; // function to solve the LP that tests whether a point is in the // convex hull of other points; the type ET is an exact type used // for the internal computations template <class Point_d, class RandomAccessIterator, class ET> CGAL::Quadratic_program_solution<ET> solve_convex_hull_containment_lp (const Point_d& p, RandomAccessIterator begin, RandomAccessIterator end, const ET& dummy) { // Constraint matrix type: A[j][i] is the i-th homogeneous coordinate of p_j typedef boost::transform_iterator <Homogeneous_begin<Point_d>, RandomAccessIterator> A_it; // Right-hand side type: b[i] is the i-th homogeneous coordinate of p typedef typename Point_d::Homogeneous_const_iterator B_it; // Relation type ("=") typedef CGAL::Const_oneset_iterator<CGAL::Comparison_result> R_it; // input number type typedef typename CGAL::Kernel_traits<Point_d>::Kernel::RT RT; // Linear objective function type (c=0: we only test feasibility) typedef CGAL::Const_oneset_iterator<RT> C_it; // the nonnegative linear program type typedef CGAL::Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> Program; // ok, we are prepared now: construct program and solve it Program lp (end-begin, // number of variables p.dimension()+1, // number of constraints A_it (begin), B_it (p.homogeneous_begin()), R_it (CGAL::EQUAL), C_it (0)); return CGAL::solve_nonnegative_linear_program (lp, dummy); }
To see this in action, let us call it with
File: examples/QP_solver/convex_hull_containment.cpp
#include <cassert> #include <vector> #include <CGAL/Cartesian_d.h> #include <CGAL/MP_Float.h> #include "solve_convex_hull_containment_lp.h" // choose exact floating-point type #ifdef CGAL_USE_GMP #include <CGAL/Gmpzf.h> typedef CGAL::Gmpzf ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif typedef CGAL::Cartesian_d<double> Kernel_d; typedef Kernel_d::Point_d Point_d; bool is_in_convex_hull (const Point_d& p, std::vector<Point_d>::const_iterator begin, std::vector<Point_d>::const_iterator end) { CGAL::Quadratic_program_solution<ET> s = solve_convex_hull_containment_lp (p, begin, end, ET(0)); return !s.is_infeasible(); } int main() { std::vector<Point_d> points; // convex hull: simplex spanned by {(0,0), (10,0), (0,10)} points.push_back (Point_d ( 0.0, 0.0)); points.push_back (Point_d (10.0, 0.0)); points.push_back (Point_d ( 0.0, 10.0)); for (int i=0; i<=10; ++i) for (int j=0; j<=10; ++j) { // (i,j) is in the simplex iff i+j <= 10 bool contained = is_in_convex_hull (Point_d (i, j), points.begin(), points.end()); assert (contained == (i+j<=10)); } return 0; }
You can avoid the explicit construction of the type CGAL::Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> if you only need an expression of it, e.g. to pass it directly as an argument to the solving function. Here is an alternative version of QP_solver/solve_convex_hull_containment_lp.h that shows how this works. In effect, you get shorter and more readable code.
File: examples/QP_solver/solve_convex_hull_containment_lp2.h
#include <boost/config.hpp> #include <boost/iterator/transform_iterator.hpp> #include <CGAL/Kernel_traits.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // unary function to get homogeneous begin-iterator of point template <class Point_d> struct Homogeneous_begin { typedef typename Point_d::Homogeneous_const_iterator result_type; result_type operator() (const Point_d& p) const { return p.homogeneous_begin(); } }; // function to test whether point is in the convex hull of other points; // the type ET is an exact type used for the computations template <class Point_d, class RandomAccessIterator, class ET> CGAL::Quadratic_program_solution<ET> solve_convex_hull_containment_lp (const Point_d& p, RandomAccessIterator begin, RandomAccessIterator end, const ET& dummy) { // construct program and solve it return CGAL::solve_nonnegative_linear_program (CGAL::make_nonnegative_linear_program_from_iterators (end-begin, // n p.dimension()+1, // m boost::transform_iterator <Homogeneous_begin<Point_d>, RandomAccessIterator>(begin), // A typename Point_d::Homogeneous_const_iterator (p.homogeneous_begin()),// b CGAL::Const_oneset_iterator<CGAL::Comparison_result>(CGAL::EQUAL), // ~ CGAL::Const_oneset_iterator <typename CGAL::Kernel_traits<Point_d>::Kernel::RT> (0)), dummy); // c }
The following example shows how we can access the important variables, using the iterators basic_variable_indices_begin() and basic_variable_indices_end().
We generate a set of points that form a 4-gon in
File: examples/QP_solver/important_variables.cpp
#include <cassert> #include <vector> #include <CGAL/Cartesian_d.h> #include <CGAL/MP_Float.h> #include "solve_convex_hull_containment_lp2.h" typedef CGAL::Cartesian_d<double> Kernel_d; typedef Kernel_d::Point_d Point_d; typedef CGAL::Quadratic_program_solution<CGAL::MP_Float> Solution; int main() { std::vector<Point_d> points; // convex hull: 4-gon spanned by {(1,0), (4,1), (4,4), (2,3)} points.push_back (Point_d (1, 0)); // point 0 points.push_back (Point_d (4, 1)); // point 1 points.push_back (Point_d (4, 4)); // point 2 points.push_back (Point_d (2, 3)); // point 3 // test all 25 integer points in [0,4]^2 for (int i=0; i<=4; ++i) for (int j=0; j<=4; ++j) { Point_d p (i, j); Solution s = solve_convex_hull_containment_lp (p, points.begin(), points.end(), CGAL::MP_Float()); std::cout << p; if (s.is_infeasible()) std::cout << " is not in the convex hull\n"; else { assert (s.is_optimal()); std::cout << " is a convex combination of the points "; Solution::Index_iterator it = s.basic_variable_indices_begin(); Solution::Index_iterator end = s.basic_variable_indices_end(); for (; it != end; ++it) std::cout << *it << " "; std::cout << std::endl; } } return 0; }
It turns out that exactly three of the four points contribute to any convex combination, even through there are lattice points that lie in the convex hull of less than three of the points. This shows that the set of basic variables that we access in the example does not necessarily coincide with the set of important variables as defined above. In fact, it is only guaranteed that a non-basic variable attains one of its bounds, but there might be basic variables that also have this property. In linear and quadratic programming terms, such a situation is called a degeneracy.
There is also the concept of an important constraint: this is
typically a constraint in the system
Again, we have a disagreement
between ``basic'' and ``important'': it is guaranteed that all
basic constraints are satisfied with equality at
Certificates are proofs that the solver can give you in order to convince you that what it claims is indeed true. The archetype of such a proof is Farkas Lemma [MG06].
Farkas Lemma: Either the inequality system
A x
b
x
0
has a solution
y
0
yTA
0
yTb
<
0,
but not both.
Thus, if someone wants to convince you that the first system in
the Farkas Lemma is infeasible, that person can simply give you
a vector
Here we show how the solver can convince you. We first set up an infeasible
linear program with constraints of the type
File: examples/QP_solver/infeasibility_certificate.cpp
#include <cassert> #include <CGAL/basic.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // choose exact integral type #ifdef CGAL_USE_GMP #include <CGAL/Gmpz.h> typedef CGAL::Gmpz ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif // program and solution types typedef CGAL::Nonnegative_linear_program_from_iterators <int**, // for A int*, // for b CGAL::Comparison_result*, // for r int*> // for c Program; typedef CGAL::Quadratic_program_solution<ET> Solution; // we demonstrate Farkas Lemma: either the system // A x <= b // x >= 0 // has a solution, or there exists y such that // y >= 0 // y^TA >= 0 // y^Tb < 0 // In the following instance, the first system has no solution, // since adding up the two inequalities gives x_2 <= -1: // x_1 - 2x_2 <= 1 // -x_1 + 3x_2 <= -2 // x_1, x_2 >= 0 int main() { int Ax1[] = { 1, -1}; // column for x1 int Ax2[] = {-2, 3}; // column for x2 int* A[] = {Ax1, Ax2}; // A comes columnwise int b[] = {1, -2}; // right-hand side CGAL::Comparison_result r[] = {CGAL::SMALLER, CGAL::SMALLER}; // constraints are "<=" int c[] = {0, 0}; // zero objective function // now construct the linear program; the first two parameters are // the number of variables and the number of constraints (rows of A) Program lp (2, 2, A, b, r, c); // solve the program, using ET as the exact type Solution s = CGAL::solve_nonnegative_linear_program(lp, ET()); // get certificate for infeasibility assert (s.is_infeasible()); Solution::Infeasibility_certificate_iterator y = s.infeasibility_certificate_begin(); // check y >= 0 assert (y[0] >= 0); assert (y[1] >= 0); // check y^T A >= 0 assert (y[0] * A[0][0] + y[1] * A[0][1] >= 0); assert (y[0] * A[1][0] + y[1] * A[1][1] >= 0); // check y^T b < 0 assert (y[0] * b[0] + y[1] * b[1] < 0); return 0; }
There are similar certificates for optimality and unboundedness
that you can see in action in the programs
QP_solver/optimality_certificate.cpp and
QP_solver/unboundedness_certificate.cpp.
The underlying variants of Farkas Lemma are somewhat more
complicated, due to the mixed relations in
Hint:
If you have a program where the number of variables
File: examples/QP_solver/cycling.cpp
#include <iostream> #include <fstream> #include <CGAL/basic.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // choose exact floating-point type #ifdef CGAL_USE_GMP #include <CGAL/Gmpzf.h> typedef CGAL::Gmpzf ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif // program and solution types typedef CGAL::Quadratic_program_from_mps<double> Program; typedef CGAL::Quadratic_program_solution<ET> Solution; int main() { std::ifstream in ("cycling.mps"); Program lp(in); // read program from file assert (lp.is_valid()); // we should have a valid mps file... assert (lp.is_linear()); // ... and it should be linear... assert (lp.is_nonnegative()); // as well as nonnegative // solve the program, using ET as the exact type // choose verbose mode and Bland pricing CGAL::Quadratic_program_options options; options.set_verbosity(1); // verbose mode options.set_pricing_strategy(CGAL::QP_BLAND); // Bland's rule options.set_auto_validation(true); // automatic self-check Solution s = CGAL::solve_nonnegative_linear_program(lp, ET(), options); assert (s.is_valid()); // did the self-check succeed? // output solution std::cout << s; return 0; }
If you comment the line
options.set_pricing_strategy(CGAL::QP_BLAND); // Bland's ruleyou will see that the solver cycles: the verbose mode outputs the same sequence of six iterations over and over again. By switching to QP_BLAND, the solution process typically slows down a bit (it may also speed up in some cases), but now it is guaranteed that no cycling occurs.
In general, the verbose mode can be of use when you are not sure whether the solver ``has died'', or whether it simply takes very long to solve your problem. We refer to the class Quadratic_program_options for further details.
Still, the example shows that the performance can be dramatically affected by switching between pricing strategies, and we give some hints on how to achieve good performance in general.
The application is the one already discussed in Section 65.5 above: testing whether a point is in the convex hull of other points. To be able to switch between pricing strategies, we add another parameter of type Quadratic_program_options to the function solve_convex_hull_containment_lp that we pass on to the solution function:
File: examples/QP_solver/solve_convex_hull_containment_lp3.h
#include <boost/config.hpp> #include <boost/iterator/transform_iterator.hpp> #include <CGAL/Kernel_traits.h> #include <CGAL/QP_options.h> #include <CGAL/QP_models.h> #include <CGAL/QP_functions.h> // unary function to get homogeneous begin-iterator of point template <class Point_d> struct Homogeneous_begin { typedef typename Point_d::Homogeneous_const_iterator result_type; result_type operator() (const Point_d& p) const { return p.homogeneous_begin(); } }; // function to test whether point is in the convex hull of other points; // the type ET is an exact type used for the computations template <class Point_d, class RandomAccessIterator, class ET> CGAL::Quadratic_program_solution<ET> solve_convex_hull_containment_lp (const Point_d& p, RandomAccessIterator begin, RandomAccessIterator end, const ET& dummy, const CGAL::Quadratic_program_options& o) { // construct program and solve it return CGAL::solve_nonnegative_linear_program (CGAL::make_nonnegative_linear_program_from_iterators (end-begin, // n p.dimension()+1, // m boost::transform_iterator <Homogeneous_begin<Point_d>, RandomAccessIterator>(begin), // A typename Point_d::Homogeneous_const_iterator (p.homogeneous_begin()),// b CGAL::Const_oneset_iterator<CGAL::Comparison_result>(CGAL::EQUAL), // ~ CGAL::Const_oneset_iterator <typename CGAL::Kernel_traits<Point_d>::Kernel::RT> (0)), // c dummy, o); }
Now let us test containment of the origin in the convex hull
of
File: examples/QP_solver/convex_hull_containment_benchmarks.cpp
#include <vector> #include <CGAL/Cartesian_d.h> #include <CGAL/MP_Float.h> #include <CGAL/Random.h> #include <CGAL/Timer.h> #include "solve_convex_hull_containment_lp3.h" // choose exact floating-point type #ifdef CGAL_USE_GMP #include <CGAL/Gmpzf.h> typedef CGAL::Gmpzf ET; #else #include <CGAL/MP_Float.h> typedef CGAL::MP_Float ET; #endif typedef CGAL::Cartesian_d<double> Kernel_d; typedef Kernel_d::Point_d Point_d; int main() { const int d = 10; // change this in order to experiment const int n = 100000; // change this in order to experiment // generate n random d-dimensional points in [0,1]^d CGAL::Random rd; std::vector<Point_d> points; for (int j =0; j<n; ++j) { std::vector<double> coords; for (int i=0; i<d; ++i) coords.push_back(rd.get_double()); points.push_back (Point_d (d, coords.begin(), coords.end())); } // benchmark all pricing strategies in turn CGAL::Quadratic_program_pricing_strategy strategy[] = { CGAL::QP_CHOOSE_DEFAULT, // QP_PARTIAL_FILTERED_DANTZIG CGAL::QP_DANTZIG, // Dantzig's pivot rule... CGAL::QP_PARTIAL_DANTZIG, // ... with partial pricing CGAL::QP_BLAND, // Bland's pivot rule CGAL::QP_FILTERED_DANTZIG, // Dantzig's filtered pivot rule... CGAL::QP_PARTIAL_FILTERED_DANTZIG // ... with partial pricing }; CGAL::Timer t; for (int i=0; i<6; ++i) { // test strategy i CGAL::Quadratic_program_options options; options.set_pricing_strategy (strategy[i]); t.reset(); t.start(); // is origin in convex hull of the points? (most likely, not) solve_convex_hull_containment_lp (Point_d (d, CGAL::ORIGIN), points.begin(), points.end(), ET(0), options); t.stop(); std::cout << "Time (s) = " << t.time() << std::endl; } return 0; }
If you compile with the macros NDEBUG or CGAL_QP_NO_ASSERTIONS set (this is essential for good performance!!), you will see runtimes that qualitatively look as follows (on your machine, the actual runtimes will roughly be some fixed multiples of the numbers in the table below, and they might vary with the random choices). The default choice of the pricing strategy in that case is QP_PARTIAL_FILTERED_DANTZIG.
strategy | runtime in seconds | |
CGAL::QP_CHOOSE_DEFAULT | | | 0.32 |
CGAL::QP_DANTZIG | | | 10.7 |
CGAL::QP_PARTIAL_DANTZIG | | | 3.72 |
CGAL::QP_BLAND | | | 3.65 |
CGAL::QP_FILTERED_DANTZIG | | | 0.43 |
CGAL::QP_PARTIAL_FILTERED_DANTZIG | | | 0.32 |
We clearly see the effect of filtering: we gain a factor of ten, roughly, compared to the next best non-filtered variant.
strategy | runtime in seconds | |
CGAL::QP_CHOOSE_DEFAULT | | | 1.34 |
CGAL::QP_DANTZIG | | | 47.6 |
CGAL::QP_PARTIAL_DANTZIG | | | 15.6 |
CGAL::QP_BLAND | | | 16.02 |
CGAL::QP_FILTERED_DANTZIG | | | 1.89 |
CGAL::QP_PARTIAL_FILTERED_DANTZIG | | | 1.34 |
In general, if your problem has a high variable/constraint or constraint/variable ratio, then filtering will typically pay off. In such cases, it might be beneficial to encode your problem using input type double in order to profit from the filtering (but see the issue discussed in Section 65.8.1).
strategy | runtime in seconds | |
CGAL::QP_CHOOSE_DEFAULT | | | 3.05 |
CGAL::QP_DANTZIG | | | 78.4 |
CGAL::QP_PARTIAL_DANTZIG | | | 45.9 |
CGAL::QP_BLAND | | | 33.2 |
CGAL::QP_FILTERED_DANTZIG | | | 3.36 |
CGAL::QP_PARTIAL_FILTERED_DANTZIG | | | 3.06 |
strategy | runtime in seconds | |
CGAL::QP_CHOOSE_DEFAULT | | | 2.65 |
CGAL::QP_DANTZIG | | | 5.55 |
CGAL::QP_PARTIAL_DANTZIG | | | 5.6 |
CGAL::QP_BLAND | | | 4.46 |
CGAL::QP_FILTERED_DANTZIG | | | 2.65 |
CGAL::QP_PARTIAL_FILTERED_DANTZIG | | | 2.61 |
In general, if you have a program where the number of variables and the number of constraints have the same order of magnitude, then the saving gained from using the filtered approach is typically small. In such a situation, you should consider switching to a non-filtered variant in order to avoid the rare issue discussed in Section 65.8.1 altogether.